Higher Order Approximations in the Heat Equation and the Truncated Moment Problem
نویسندگان
چکیده
In this paper we employ linear combinations of n heat kernels to approximate solutions to the heat equation. We show that such approximations are of order O(t ( 1 2p− 2n+1 2 ) in Lp-norm, 1 ≤ p ≤ ∞, as t → ∞. For positive solutions of the heat equation such approximations are achieved using the theory of truncated moment problems. For general sign-changing solutions, this type of approximations are obtained by simply adding an auxiliary heat kernel. Furthermore, inspired by numerical computations, we conjecture that such approximations converge geometrically as n→∞ for any fixed t > 0.
منابع مشابه
Recurrence Relations for Moment Generating Functions of Generalized Order Statistics Based on Doubly Truncated Class of Distributions
In this paper, we derived recurrence relations for joint moment generating functions of nonadjacent generalized order statistics (GOS) of random samples drawn from doubly truncated class of continuous distributions. Recurrence relations for joint moments of nonadjacent GOS (ordinary order statistics (OOS) and k-upper records (k-RVs) as special cases) are obtained. Single and product moment gene...
متن کاملBoundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method
In this paper, we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain. This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve. To this end, the boundary integral equation method is used. Since the resulting system of linea...
متن کاملFilm cooling effectiveness in single row of holes: First moment closure modeling
The present article focuses on the evaluation of a first-moment closure model applicable to film cooling flow and heat transfer computations. The present first-moment closure model consists of a higher level of turbulent heat flux modeling in which two additional transport equations for temperature variance kθ and its dissipation rate εθ are ...
متن کاملApplication of fractional-order Bernoulli functions for solving fractional Riccati differential equation
In this paper, a new numerical method for solving the fractional Riccati differential equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon fractional-order Bernoulli functions approximations. First, the fractional-order Bernoulli functions and their properties are presented. Then, an operational matrix of fractional order integration...
متن کاملSolving linear and nonlinear optimal control problem using modified adomian decomposition method
First Riccati equation with matrix variable coefficients, arising in optimal and robust control approach, is considered. An analytical approximation of the solution of nonlinear differential Riccati equation is investigated using the Adomian decomposition method. An application in optimal control is presented. The solution in different order of approximations and different methods of approximat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 40 شماره
صفحات -
تاریخ انتشار 2009